首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   14篇
  国内免费   1篇
测绘学   17篇
大气科学   24篇
地球物理   38篇
地质学   83篇
海洋学   12篇
天文学   59篇
自然地理   8篇
  2023年   2篇
  2021年   4篇
  2020年   3篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   10篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   7篇
  2008年   14篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   13篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1988年   3篇
  1985年   3篇
  1983年   2篇
  1982年   3篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1960年   1篇
  1956年   1篇
  1948年   1篇
排序方式: 共有241条查询结果,搜索用时 93 毫秒
51.
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate.  相似文献   
52.
The formation of the supercontinent Pangaea during the Permo–Triassic gave rise to an extreme monsoonal climate (often termed ‘mega-monsoon’) that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2·4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red–green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus.  相似文献   
53.
The effect of spray droplets in the marine surface layer on evaporation is considered. Independent evidence from energy constraints, from visibility and from sea salt content of air is used. The estimation shows that, except perhaps for hurricane wind strength, the increase of total evaporation from evaporating droplets is negligible. This is in agreement with recent experimental evidence.  相似文献   
54.
Trace element concentrations in gold grains from various geological units in South Africa were measured in situ by field emission‐electron probe microanalysis (FE‐EPMA), laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and synchrotron micro X‐ray fluorescence spectroscopy (SR‐μ‐XRF). This study assesses the accuracy, precision and detection limits of these mostly non‐destructive analytical methods using certified reference materials and discusses their application in natural sample measurement. FE‐EPMA point analyses yielded reproducible and discernible concentrations for Au and trace concentrations of S, Cu, Ti, Hg, Fe and Ni, with detection limits well below the actual concentrations in the gold. LA‐ICP‐MS analyses required larger gold particles (> 60 μm) to avoid contamination during measurement. Elements that measured above detection limits included Ag, Cu, Ti, Fe, Pt, Pd, Mn, Cr, Ni, Sn, Hg, Pb, As and Te, which can be used for geochemical characterisation and gold fingerprinting. Although LA‐ICP‐MS measurements had lower detection limits, precision was lower than FE‐EPMA and SR‐μ‐XRF. The higher variability in absolute values measured by LA‐ICP‐MS, possibly due to micro‐inclusions, had to be critically assessed. Non‐destructive point analyses of gold alloys by SR‐μ‐XRF revealed Ag, Fe, Cu, Ni, Pb, Ti, Sb, U, Cr, Co, As, Y and Zr in the various gold samples. Detection limits were mostly lower than those for elements measured by FE‐EPMA, but higher than those for elements measured by LA‐ICP‐MS.  相似文献   
55.
56.
Between 1980 and 1984 extensive studies were carried out in the Baltic Sea on trace metals (Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in water, suspended matter and sediments. The results enabled the influence of different factors on metal distribution patterns to be considered. The vertical profiles of dissolved and particulate metals in waters of the central deep basins reflect influences caused by oxygen deficiency and anoxic conditions in near-bottom water layers. Peculiarities at Station BY15 in the Gotland Deep included high dissolved Fe, Mn and Co concentrations and remarkable enrichment of Zn (0.64%), Cd (51 μg g−1) and Cu (0.15%) in particulate matter from the anoxic zone. Manganese-rich particles were accumulated above this layer.In fine-grained soft sediments below anoxic deep waters, maximum contents of Cd, Cu and Zn were observed, relative to other coring sites, between Bothnian Bay and Lübeck Bight. The Hg content in sediments probably reflects the joint flocculation with organic matter. Land-based sources seem to play the leading part for maximum lead contents.  相似文献   
57.
During a cruise on the North Sea and the North East Atlantic, about 90 samples were obtained from various depths. Concentrations of cadmium, copper, lead, nickel and zinc were determined by atomic absorption spectroscopy after separation/concentration using two different extraction methods. One, using APDC and MIBK, was applied directly on board while the other, using a mixture of dithiocarbamates and freon, was applied after storage under acid conditions. About half of the samples were also analysed for cadmium, copper and lead using ASV. The results of these determinations are intercompared. Consistent results were obtained for cadmium with the two extraction methods and for lead with the freon extraction method and ASV. In the other cases discrepancies were found.  相似文献   
58.
During a cruise on board RV Gauss in May/June 1988, joint investigations into organochlorine compounds, dissolved trace metals, petroleum hydrocarbons and basic hydrography were carried out at representative stations of the Baltic Monitoring Programme (BMP). The aim of the cruise was to study distribution patterns and — using previous data — to establish temporal trends if at all discernible.Each group of contaminants investigated showed specific characteristics, with differences even between compounds within the same group. The differences are due to:
–  - the partition of contaminants between dissolved and adsorbed form;
–  - the response to redox conditions;
–  - the influence of microbial decay, organic production or changes in speciation.
  相似文献   
59.
We simulated entrainment of carbonates (calcite, dolomite) in silicate impact melts by 1-bar laser melting of silicate–carbonate composite targets, using sandstone, basalt, calcite marble, limestone, dolomite marble, and iron meteorite as starting materials. We demonstrate that carbonate assimilation by silicate melts of variable composition is extremely fast (seconds to minutes), resulting in contamination of silicate melts with carbonate-derived CaO and MgO and release of CO2 at the silicate melt–carbonate interface. We identify several processes, i.e., (1) decomposition of carbonates releases CO2 and produces residual oxides (CaO, MgO); (2) incorporation of residual oxides from proximally dissociating carbonates into silicate melts; (3) rapid back-reactions between residual CaO and CO2 produce idiomorphic calcite crystallites and porous carbonate quench products; (4) high-temperature reactions between Ca-contaminated silicate melts and carbonates yield typical skarn minerals and residual oxide melts; (5) mixing and mingling between Ca- or Ca,Mg-contaminated and Ca- or Ca,Mg-normal silicate melts; (6) precipitation of Ca- or Ca,Mg-rich silicates from contaminated silicate melts upon quenching. Our experiments reproduce many textural and compositional features of typical impact melts originating from silicate–carbonate targets. They reinforce hypotheses that thermal decomposition of carbonates, rapid back-reactions between decomposition products, and incorporation of residual oxides into silicate impact melts are prevailing processes during impact melting of mixed silicate–carbonate targets. However, by comparing our results with previous studies and thermodynamic considerations on the phase diagrams of calcite and quartz, we envisage that carbonate impact melts are readily produced during adiabatic decompression from high shock pressure, but subsequently decompose due to heat influx from coexisting silicate impact melts or hot breccia components. Under certain circumstances, postshock conditions may favor production and conservation of carbonate impact melts. We conclude that the response of mixed carbonate–silicate targets to impact might involve melting and decomposition of carbonates, the dominant response being governed by a complex variety of factors.  相似文献   
60.
We have investigated silicate emulsions in impact glasses and impact melt rocks from the Wabar (Saudi Arabia), Kamil (Egypt), Barringer (USA), and Tenoumer (Mauritania) impact structures, and in experimentally generated impact glasses and laser-generated glasses (MEMIN research unit) by scanning electron microscopy, electron microprobe analysis, and transmission electron microscopy. Textural evidence of silicate liquid immiscibility includes droplets of one glass disseminated in a chemically distinct glassy matrix; sharp phase boundaries (menisci) between the two glasses; deformation and coalescence of droplets; and occurrence of secondary, nanometer-sized quench droplets in Si-rich glasses. The compositions of the conjugate immiscible liquids (Si-rich and Fe-rich) are consistent with phase separation in two-liquid fields in the general system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5. Major-element partition coefficients are well correlated with the degree of polymerization (NBO/T) of the Si-rich melt: Fe, Ca, Mg, and Ti are concentrated in the poorly polymerized, Fe-rich melt, whereas K, Na, and Si prefer the highly polymerized, Si-rich melt. Partitioning of Al is less pronounced and depends on bulk melt composition. Thus, major element partitioning between the conjugate liquids closely follows trends known from tholeiitic basalts, lunar basalts, and experimental analogs. The characteristics of impact melt inhomogeneity produced by melt unmixing in a miscibility gap are then compared to impact melt inhomogeneity caused by incomplete homogenization of different (miscible or immiscible) impact melts that result from shock melting of different target lithologies from the crater's melt zone, which do not fully homogenize and equilibrate due to rapid quenching. By taking previous reports on silicate emulsions in impact glasses into account, it follows that silicate impact melts of variable composition, cooling rate, and crystallization history might readily unmix during cooling, thereby rendering silicate liquid immiscibility a much more common process in the evolution of impact melts than previously recognized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号